

PLANNING TO REMEMBER: INNOVATION AND INHERITANCE IN THE DESIGN OF A MOON/MARS SPACECRAFT

Charlotte Linde NASA Ames Research Center

American Anthropological Association 2005 Conference

How Do Institutions Remember?

- This talk is about the institutional memory involved in building a new spacecraft
- It fits within a larger set of questions about institutional memory:
 - Do institutions remember?
 - If they do, what do they remember with?

Do Institutions Remember?

- Clearly not in the neurological sense
- But institutions do manage to preserve and use representations of the past to guide present and future actions
- Daly, Fentress and Wickham, etc.


What Do Institutions Use To Remember?

• Records: paper and digital

Stories: Oral and written

"There's a story about Wernher Von Braun ..."

Records of Shuttle Repair in "coffins" at Kennedy Space Center

What Do Institutions Use to Remember?

- Material constructions
 - Objects
 - Infrastructure

Shuttle in KSC High Bay for Refitting

Practices

Drawings by astronauts' children during launch

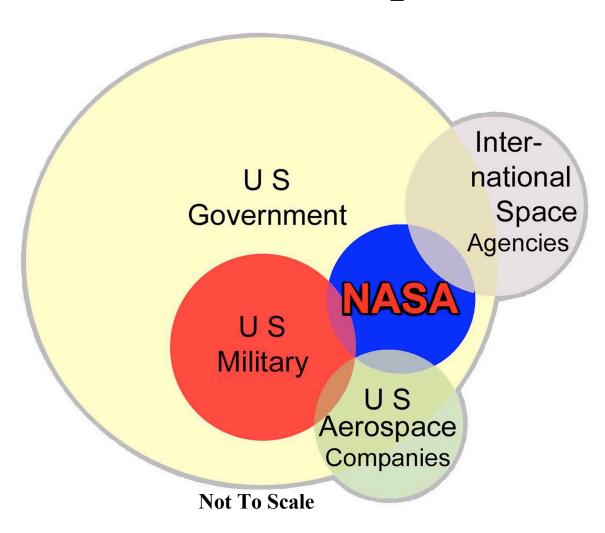
NASA's Spacefaring Plans: President's Space Vision - 1/14/04

- Develop & test a new spacecraft, Crew Exploration Vehicle
 - Unmanned flight by 2008,
 - First manned mission no later than 2014, carrying astronauts beyond our orbit to other worlds.
- Return to the moon by 2020, as launching point for missions beyond.
 - By 2008, robotic missions to the lunar surface to research and prepare for future human exploration.
 - Human missions to the moon as early as 2015
- Next steps of space exploration: human missions to Mars and to worlds beyond.

History of Design Efforts: Planned Successors of the Shuttle

- Experimental Space Planes:
 - X-33, X-34, X-37
- Orbital Space Plane: Space Bus to the Shuttle
- Crew Exploration Vehicle
 - First design round for National Space Vision
- Current Apollo-like architecture
 - Crew vehicle docks with lunar lander in space

Artist's Concept: Lunar Lander Launch, Crew Launch, Crew and Lander Dock and Depart for the Moon


An Anthropologist (Working) On Mars: How I'm Involved

- As part of this effort, I have been a member of two spaceship planning teams
 - Orbital Space Plane Requirements Team
 - An earlier design effort
 - I helped to design and evaluate requirements in the areas of knowledge management, training, the human side
 - NASA Ames Crew Exploration Vehicle Team
 - First iteration of National Space Vision plans
 - Team developing NASA partnerships with industry
 - I represented the area of knowledge management, particularly in Integrated Vehicle Health Management Systems

Design and Memory

- Spaceship design is an ideal location to study the role of material objects in institutional remembering
- Any spaceship design draws heavily on previous designs
 - Engineering conservatism: stick with designs that you know have worked
 - Financial conservatism: aerospace corporations have an interest in selling what they already have in the pipeline

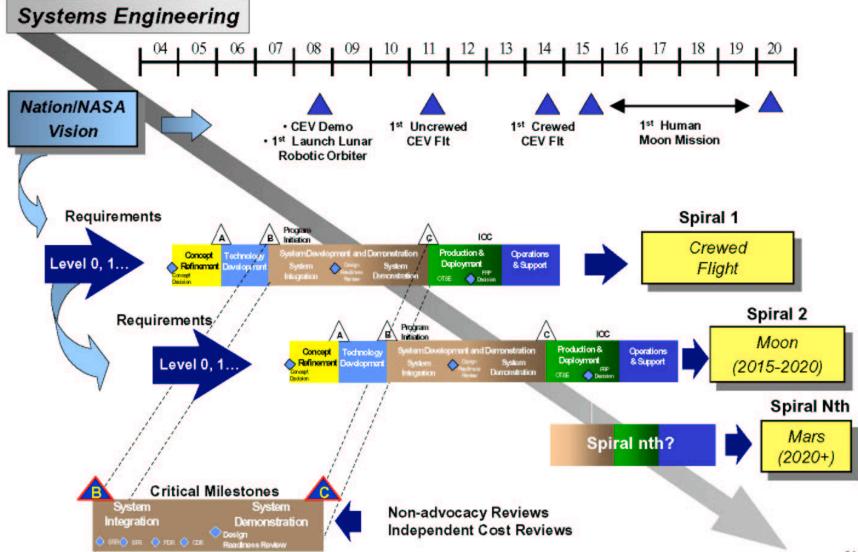
The System of AeroSpace: Who Builds a Spacecraft

Memory Issues in Spacecraft Design

- Where does institutional memory reside?
 - Complex collaboration between NASA, aerospace companies, international partners
- Time scale
 - These are "generational missions"
 - How to pass knowledge from departing experts to their replacements (or database it)
- Issue of documentation
 - What must contractors document?
 - Depends on how the contracts are written
 - Long term storage of archives, particularly for terminated projects

Procurement Model & Design Process

- Procurement Model Issues
 - How detailed is the Request For Proposal?
 - Functional requirements leave design decisions to contractors
 - Technically detailed requirements come from design decisions inhouse at NASA
 - Historically a tension between NASA and the aerospace companies
 - Alternate Structures for the Competitive Process
 - Open Competition
 - Downselect to two competitors with flyoff
 - "Third rail" funding for non-traditional aerospace firms
 - Directed funding
- All of these affect which institution is the primary carrier of design memory


Time Scale and Memory

- Moon, Mars and Beyond is a multi-decade plan
 - Can not make detailed plans for technology not yet developed
 - Plan includes "spiral development" essentially planning to plan
 - Cyclical approach: design spiral allows for feedback and learning
 - Initially a software development method
 - Adapted by DoD as part of its evolutionary acquisition strategy to get newer technologies into large platforms, such as assault vehicles and computer systems, much more quickly.


Project Constellation (Crew Exploration Vehicle)

Problems of Long-term Planning

- No one wants to be responsible for the next Y2K problem
 - Obvious design flaw that could have been anticipated

- More thoughtful designers don't want to be responsible for the next QWERTY keyboard
 - A good solution for its time
 - Could be improved or replaced once new keyboard technologies are designed
 - Problem is social: an installed base of users can not be forced to switch to a better design when the technology changes

Conclusion: Studying the Accretion of Memory

- Design is a powerful carrier of memory
- Time involved allows for easier study
 - This is the *longue durée* of technology
- Complex interaction of technical, political and societal factors
- Spaceships are expensive, complex, beloved, and cool